Use Self-Hosted CodeRabbit With Bitbucket Datacenter
The self-hosted option is only available for CodeRabbit Enterprise customers with 500 user seats or more. Please contact CodeRabbit Sales to learn more about the CodeRabbit Enterprise plan.
Create a Bitbucket User
- Username: Set the username to "CodeRabbit" for easier identification (optional).
- Profile Image: Use the CodeRabbitAI logo for the user image (optional).
Add User to Projects
Add the CodeRabbit user to each project where you want CodeRabbit to post reviews, with permissions to:
- Post reviews
- Open pull requests
Create a Personal Access Token for CodeRabbit user
Generate a personal access token for the CodeRabbit user to be added in the .env
file as BITBUCKET_SERVER_BOT_TOKEN
.
Add a webhook to each project
- Navigate to Webhook Settings: Go to the repository settings and locate the webhooks configuration page.
- Configure Events: Enable the following Pull Request events:
- "Opened"
- "Modified"
- "Comment Added"
- Add Webhook URL: Enter the URL pointing to the CodeRabbit service, followed by
/bitbucket_server_webhooks
(e.g.,http://127.0.0.1:8080/bitbucket_server_webhooks
).
Prepare a .env
file
Create a .env
file with the following content:
# if using OpenAI
LLM_PROVIDER=openai
LLM_TIMEOUT=360000
OPENAI_API_KEYS=<openai-key>
OPENAI_BASE_URL=[<openai-base-url>]
OPENAI_ORG_ID=[<openai-org-id>]
OPENAI_PROJECT_ID=[<openai-project-id>]
# if using Azure OpenAI
LLM_PROVIDER=azure-openai
LLM_TIMEOUT=360000
AZURE_OPENAI_ENDPOINT=<azure-openai-endpoint>
AZURE_OPENAI_API_KEY=<key>
## it is recommended to use gpt-4o-mini, o1-mini, and o1-preview deployments. The production release of o1 model is inferior to the preview release as of now. Also, please make sure that the deployment name of o1-preview mentions "o1-preview" in it.
AZURE_GPT4OMINI_DEPLOYMENT_NAME=<gpt-4o-mini-deployment-name>
AZURE_O1MINI_DEPLOYMENT_NAME=[<o1-mini-deployment-name>]
AZURE_O1_DEPLOYMENT_NAME=[<o1-deployment-name>]
# if using AWS Bedrock
LLM_PROVIDER=bedrock-anthropic
AWS_ACCESS_KEY_ID=<aws-access-key>
AWS_SECRET_ACCESS_KEY=<aws-secret-access-key>
AWS_REGION=<aws-region>
# System Configuration
TEMP_PATH=/cache
SELF_HOSTED=bitbucket-server
BITBUCKET_SERVER_URL=<bitbucket-server-url>/rest
BITBUCKET_SERVER_WEBHOOK_SECRET=<webhook-secret>
BITBUCKET_SERVER_BOT_TOKEN=<personal-access-token>
BITBUCKET_SERVER_BOT_USERNAME=<bot-user-username>
CODERABBIT_LICENSE_KEY=<license-key>
CODERABBIT_API_KEY=<coderabbitai-api-key>
# Optional Features
ENABLE_LEARNINGS=[true]
ENABLE_METRICS=[true]
JIRA_HOST=[<jira-host-url>]
JIRA_PAT=[<jira-personal-access-token>]
LINEAR_PAT=[<linear-personal-access-token>]
- If you are using Azure OpenAI, verify that the model deployment names are in the .env file. Values marked with [] are optional and can be omitted if the feature is not needed.
- You can generate
CODERABBIT_API_KEY
from CodeRabbit UI -> Organizations Settings -> API Keys.
Pull the CodeRabbit Docker image
Authenticate and pull the Docker image using the provided credentials file:
cat coderabbit.json | docker login -u _json_key --password-stdin us-docker.pkg.dev
docker pull us-docker.pkg.dev/coderabbitprod/self-hosted/coderabbit-agent:latest
Verify the image is up
You can query /health
endpoint to verify that the coderabbit-agent
service is up and running.
curl 127.0.0.1:8080/health
Host the image
You can host the image on a server, serverless function, or container environment and expose port 8080
. Run the Docker image with the equivalent command on your chosen platform, ensuring you replace the .env
file path with the path to your actual .env
file:
docker run --env-file .env --publish 127.0.0.1:8080:8080 us-docker.pkg.dev/coderabbitprod/self-hosted/coderabbit-agent:latest